Processing math: 11%
-->
Blogger Archive - Blogger tips and tricks

Analog Circuits Sectional Test Six

Q. No. 1 - 10 Carry One Mark Each
1. Find the maximum output voltage if Vin = 35V, IADJ = 100μA
Analog Circuit EC-ID-1341_Q1

(A) 30.16V    (B) 16.8V    (C) 32.2V    (D) 1.25V

Correct Answer : A

Solve-1. Vout=VREF(1+R2R1)+IADJR2 = 30.16V
2. What is the transfer gain of the circuit shown below?
Analog Circuit EC-ID-1341_Q2

(A) RCS2    (B) 1R2S2C2    (C) R2C2S    (D) R2C2S2

Correct Answer : B

Solve-2. VoVi=Y21AY12B = 2(SCR+1)2R(SCR+1)RS2C2=1R2S2C2
3. The voltage gain verses the frequency curve of an op-amp is shown below, the gain-bandwidth product of the op-amp is
Analog Circuit EC-ID-1341_Q3

(A) 200Hz    (B) 200MHz    (C) 200KHz    (D) 2MHz

Correct Answer : C

Solve-3. The gain bandwidth product = 20×Av; (Av)dB=20log10(Av)
80=20log10(Av) Av=104
Gain bandwidth product = 20×104 = 200 KHz
4. The current through the resistor R in the circuit shown below is
Analog Circuit EC-ID-1341_Q4

(A) 1mA    (B) 4mA    (C) 8mA    (D) 10mA

Correct Answer : D

Solve-4. We know that the voltage across '+' terminal is equal to '-' terminal in op-amp
So, I_c = \frac {12 - 2}{1KΩ} = 10mA. Since op-amp draws no current I_B = 0
\therefore I_E = I_C \implies The current through resistor R is 10mA.
5. Calculate the output of an op-amp circuit shown below.
Analog Circuit EC-ID-1341_Q5

(A) (1 + \frac {R_2}{R_1})V_i    (B) (1 + \frac {2R_2}{R_1})V_i    (C) (1 + \frac {R_2}{R_1})V_i    (D) 0

Correct Answer : D

Solve-5. Input current to the op-amp is zero, so output is zero
6. The shunt derived series fed feed back in an amplifier

(A) Increases its output impedance    (B) Increases its input impedance
(C) Decreases its output impedance    (D) Both B and C

Correct Answer : D
7. If Barkhausen criterion is not full filled by an oscillator circuit, it will

(A) Stop oscillating
(B) Produce damping waves continuously
(C) Become an amplifier
(D) Produce high frequency whistles

Correct Answer : A
8. Find relation between R_1 and R_2.
Analog Circuit EC-ID-1341_Q8

(A) R_2 = 3R_1    (B) R_2 = 4R_1    (C) R_2 = 5R_1    (D) R_2 = 6R_1

Correct Answer : C

Solve-8. The condition for oscillation is Aβ = 1
\therefore \frac {V_o}{V_f} \frac {V_f}{V_o} = 1 \implies (1 + \frac {R_2}{R_1})\frac {1}{6} = 1 \implies (R_1 + R_2) = 6R_1 \implies R_2 = 5R_1
9. The resonant circuit of a tuned collector transistor oscillator has a resonant frequency of 4 MHz, if the value of capacitance is increased by 50% then the new value of resonant frequency is ______ (MHz)

Correct Answer : From: 3.293 To: 3.227

Solve-9. f_o = \frac {1}{2π\sqrt {LC}}
1st case 4 \times 10^6 = \frac {1}{2π\sqrt {LC}},    2nd cases f_o^1 = \frac {1}{2π\sqrt {L \times 1.5C}},    f_o^1 = \frac {4 \times 10^6}{\sqrt {1.5}} = 3.26MHz
10. An amplifier with an initial open loop gain of 400 is used as negative feedback amplifier. The feedback factor is 0.05, If the gain of the amplifier changes 10% due to temperature, then the closed loop gain will change approximately by _______(%)

Correct Answer : From: 0.505 To: 0.495

Solve-10. We know that \frac {ΔA_f}{A_f} = \frac {dA}{A} \frac {1}{1 + Aβ}; So, \frac {dA_f}{A_f} = \frac {(\frac {10}{100})}{1 + 400 \times 0.05} = 0.5%
Q. No. 11 - 20 Carry Two Mark Each
11. What will be the output waveform for the circuit shown below?
Analog Circuit EC-ID-1341_Q11


Correct Answer : C

Solve-11. During the negative half cycle of the input voltage diode D basically conducts when V_i is less than -10V. So then the circuit looks as shown
Analog Circuit EC-ID-1341_E11-ans1

So then V_o = -10V and considering V_{i(max)}
it can be written that
-30 + V_c +10 = 0 \implies V_c = 20 volt

During positive half cycle, the circuit will look like
Analog Circuit EC-ID-1341_E11-ans2

Here it can be written that
30 + 20 - V_o = 0
\implies V_o = 50 volt

The waveform shown in option (C) will be the proper answer, since in this waveform V_o will not start from zero due to the existence of some non zero capacitive voltage.
12. For the circuit drawn below I_{DSS} = 10mA,   V_p = -8volt,   V_{GSQ} = -2V,   Y_{OS} = 20μs . Determine the voltage gain A_v.
Analog Circuit EC-ID-1341_Q12

(A) -3.61    (B) -3.76    (C) +3.61    (D) +3.76

Correct Answer : A

Solve-12. g_{mo} = \frac {2I_{DSS}}{|V_p|} = \frac {2 \times 10}{8} = 2.5ms    \therefore g_m = g_{mo}(1 - \frac {V_{GSQ}}{V_p}) = 2.5(\frac {(-2)}{(-8)}) = 1.88ms
r_d = \frac {1}{Y_{os}} = \frac {1}{20μs} = 50kΩ,     Z_i = R_G = 1MΩ
Z_o = R_D || r_d = 2kΩ || 50kΩ = 1.92kΩ    \therefore A_v = -g_m(R_D || r_d) = -1.88 \times 1.92 = -3.61
13. Calculate A_v for the following circuit which has I_{DS(ON)} = 6mA;    V_{GS(ON)} = 8V;    V_{GS(Th)} = 3V;    Y_{DS} = 20μs;    K = 0.24 \times 10^{-3} A/V^2;    V_{GSQ} = 6.4V;    I_{DQ} = 2.75mA
Analog Circuit EC-ID-1341_Q13

(A) -4.90    (B) -4.61    (C) -4.75    (D) +4.90

Correct Answer : B

Solve-13. g_m = 2k(V_{GSQ} - V_{GS(Th)}) = 2(0.24 \times 10^{-3} A/V^2)(6.4V - 3V) = 1.63ms
r_d = \frac {1}{Y_{DS}} = \frac {1}{20μs} = 50kΩ
\therefore Z_o = R_F || r_d || R_D
= 10MΩ || 50kΩ || 3kΩ = 49.75kΩ || 3kΩ = 2.83kΩ
A_v = -g_m(R_F || r_d || R_D)
= -g_mZ_o = -1.63ms \times 2.8kΩ = -4.6
14. A bridge rectifier circuit has a load resistance of 3000 Ω and it is connected across a 200 V (rms) supply. Each diode of the rectifier has a forward resistance of 60Ω. Determine the ripple voltage at the Output.

(A) 43.37 V    (B) 6.71 V    (C) 73.64 V    (D)83.69 V

Correct Answer : D

Solve-14. I_m = \frac {V_m}{2R_f + R_L} = \frac {200\sqrt {2}}{120 + 3000}
I_{dc} = \frac {2I_m}{π} = \frac {2 \times 0.09096}{π} = 0.0576 Amp
Now ripple voltage, I_{rms}'R_L = (I_{rms}^2 - I_{dc}^2)^{\frac {1}{2}}    R_L = (0.064^2 - 0.0576^2)^{\frac {1}{2}} \times 3000
I_{rms} = \frac {I_m}{\sqrt {2}} = \frac {0.0906}{\sqrt {2}} = 0.064
\therefore Ripple voltage at the output = 83.69V
15. For the circuit shown below, if R_1 = 2K Ohm, R_2 = 4K Ohm, R_L = 3K Ohm. The value of I_o is ________ (mA), if I_i = 1mA
Analog Circuit EC-ID-1341_Q15


Correct Answer : From: -1.515 To: -1.485

Solve-15. The given circuit is
Analog Circuit EC-ID-1341_E15

Applying Nodal analysis
-1mA + 0 + \frac {0 - V_o}{R_1} = 0 \implies V_o = -1mA \times R_1 = -1mA \times 2kΩ = -2V
I_2 = \frac {-2}{4K} = -0.5mA.
By KCL we can get I_o + 1mA + 0.5mA = 0 \implies I_o = -1.5mA
16. For the op-amp circuit shown below, the open loop differential gain is 10^3. The output voltage V_o, for V_i = 2V is _____ (V).
Analog Circuit EC-ID-1341_Q16


Correct Answer : From: 2.016 To: 1.976

Solve-16. In inverting op-amp the overall voltage gain is given by A_v = -\frac {A_oK}{1 + A_oβ}
Here K = attenuation constant and is given by
K = \frac {R_f}{R_1 + R_f} = \frac {1}{2};
β = Feedback factor, β = \frac {R_1}{R_f + R_1} = \frac {100}{200} = \frac {1}{2}
A_v = \frac {-1000 \times \frac{1}{2}}{1 + 1000 \times \frac {1}{2}} = \frac {-500}{+501} = -0.998
But from op-amp voltage gain is \frac {V_o}{V_i} = -0.998;    V_o = -0.998 \times -2 = 1.996V
Common Data Questions: 17 and 18
Analog Circuit EC-ID-1341_Q17


17. Voltage gain for the amplifier is

(A) \frac {-R_2}{R_1R_3}    (B) \frac {R_2}{R_1R_3}    (C) \frac {-R_2}{R_1}    (D) None

Correct Answer : C

Solve-17.

From scale changer
Voltage gain = \frac {V_o}{V_1} = \frac {-R_2}{R_1}



18. Input resistance for the amplifier is

(A) \frac {1}{R_1} + \frac {2R_2}{R_1R_3} + \frac {1}{R_3}    (B) \frac {1}{\frac {1}{R_1} - \frac {2R_2}{R_1R_3} + \frac {1}{R_3}}
(C) \frac {1}{\frac {1}{R_1} - \frac {2R_2}{R_1R_3} - \frac {1}{R_3}}    (D) None

Correct Answer : B

Solve-18. I = I_2 - I_1 = \frac {V_i}{R_1} - \frac {(-2V_o - V_i)}{R_3}
I = \frac {V_i}{R_1} - \frac {2R_2V_i}{R_1R_3} + \frac {V_i}{R_3}
R_i = \frac {V_i}{I} = \frac {1}{\frac {1}{R_1} - \frac {2R_2}{R_1R_3} + \frac {1}{R_3}}
Statement for Linked Answer Questions: 19 and 20
A differential amplifier has V_{s1} = 10mV;   V_{s2} = 9mV;   It has a differential mode gain of 60db and CMRR of 80db.

19. Output voltage is
(A) 1.00095 V    (B) 1.0095 V    (C) 2.5 V    (D) None

Correct Answer : A

Solve-19. For Ideal case:
V_o = A_dV_d;   V_d = V_{s1} - V_{s2} = 10 - 9 = 1mV
20 log_{10}A_d = 60;   A_d = 10^3
V_o = 10^3 \times 1 \times 10^{-3} = 1V
For General Case:
20 log_{10}CMRR = 80
CMRR = 10^4
A_c = \frac {A_d}{CMRR} = \frac {10^3}{10^4} = 1
V_c = \frac {V_{s1} + V_{s2}}{2} = \frac {10 + 9}{2} = 9.5mV
V_o = A_dV_d + A_cV_c = 10^3 \times 1 \times 10^{-3} + 0.1 \times 9.5 \times 10^{-3}
V_o = 1.00095V



20. Error voltage is

(A) 0.00025 V    (B) 0.00055 V    (C) 0.00065 V    (D) 0.00095 V

Correct Answer : D

Solve-20. V_{error} = V_{o(General)} - V_{o(Ideal)} = 1.00095 - 1 = 0.00095V